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Abstract—The change information of sea ice is important for
navigation safety and natural resource extraction, and polar sea
ice monitoring has drawn increasing attentions. In this paper, we
focus on the problem of sea ice change detection from Synthetic
Aperture Radar (SAR) images. Existing works usually treat the
problem as a classification task. Recently, researchers noticed
that humans and animals learn much better when the examples
are organized in a meaningful order, and proposed Self-Paced
Boost Learning (SPBL) to simulate the process. Inspired by this,
we proposed a novel sea ice change detection method based on
SPBL. First, log-ratio operator is utilized for difference image
generation. Then, a hierarchical fuzzy c-means (FCM) clustering
algorithm is employed to select reliable samples. Finally, based
upon these samples, SPBL is employed to classify pixels from
the original SAR images into unchanged and changed class. The
quantitative and qualitative analysis on two real SAR datasets
has demonstrated the effectiveness of the proposed method.

Index Terms—synthetic aperture radar images; change detec-
tion; self-paced boost learning; feature classification

I. INTRODUCTION

Sea ice information is very important for the safe navigation
of vessels, since the amount of ice adversely impacts the
friction against the hull of a vessel. Some vessel’s path is often
blocked by thick sea ice. Therefore, polar sea ice research has
attracted increasing attention these years. Especially, global
warming accelerates loss of sea ice, which threatens animals
and people living in the Arctic. Polar sea ice research has
raised global security concerns.

Synthetic aperture radar (SAR) sensors provide the capabil-
ity for all-weather, day-and-night surveillance. In recent years,
the rapid developments of SAR sensor make the collection
of SAR data more convenient. With the reduction of revisit
interval, multi-temporal SAR images from the same area
provide reliable data source for change detection. SAR image
change detection has become a hot research topic in remote
sensing applications. However, SAR image is easily affected
by speckle noises, and change detection from SAR images has
been widely acknowledged as a challenge task.

SAR image change detection is usually treated as a clas-
sification task. Specifically, a difference image (DI) is first
calculated by log-ratio operator. Then, pixels in the DI are

classified into changed and unchanged class by expectation
maximization algorithm [1], fuzzy c-means (FCM) clustering
[2], and support vector machines [3], etc. Gao et al. [2]
presented a hierarchical FCM clustering algorithm for SAR
change detection. The FCM algorithm is implemented in a
coarse-to-fine procedure, and the change detection perfor-
mance can be improved by the algorithm. Wang et al. [3]
presented a SAR image change detection method based on
Laplacian SVM. Some labeled samples are selected from the
DI. Laplacian SVM explores the change information from
these samples, and the discriminative power in changed pixels
identification is enhanced. Hou et al. [4] presented a novel
SAR image change detection technique based on compressed
projection. Nonsubsampled contourlet transform is used to
reduce the noise of the DI, and compressed projection is
employed to extract feature for each pixel. The final change
map is generated by partitioning the feature vector into
changed and unchanged class using k-means clustering. Gong
et al. [5] proposed a reformulated fuzzy local information c-
means clustering algorithm for changed and unchanged pixels
classification. The spatial context information is incorporated
in a fuzzy way for the purpose of enhancing the changed
information. The speckle noise can also be reduced, and
the results obtained by the algorithm exhibit lower errors
than the original fuzzy c-means algorithm. Lv and Zhong
[6] proposed a multifeature probabilistic ensemble conditional
random field method for change detection. The interactions
between neighborhood pixels and the structural properties of
the ground objects are take into account. In the unary potential
of random field, the morphological feature of the DI are com-
bined using a probabilistic ensemble strategy, and the method
can obtain good classification performance for high spatial
resolution images. The aforementioned method have obtained
good performance. However, if more advanced classification
model is utilized, the change detection performance can be
further improved.

Bengio et al. [7] noticed that humans and animals learn
much better when the examples are organized in a meaningful
order. The order illustrates gradually more concepts, and
gradually more complex ones. Inspired by this phenomenon,
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they proposed curriculum learning which can guide training
towards better regions in parameter space. Later, Zhao et al.
[8] studied self-paced learning paradigm which dynamically
incorporates samples into learning from easy ones from com-
plex ones. Recently, Pi et al. [9] noticed that boosting and
SPL are consistent in basic concepts. Both schemes are based
on an asymptotic learning process from a weak state to a
strong state. Furthermore, boosting methods tends to reflect the
local patterns, while SPL tends to explore the data smoothly
with more robustness. Considering these characteristics of
SPL, they proposed Self-Paced Boosting Learning (SPBL).
SPBL can encourage reliable samples while suppress negative
samples. If such schemes can be utilized into SAR image
change detection, the intrinsic discriminative patterns between
change and unchange regions maybe captured while keep the
reliability of the training samples.

In this paper, we presented a novel SAR image change
detection framework. SPBL is first introduced into SAR image
change detection. Some pixels with high probabilities to
be changed or unchanged are selected as training samples.
Image patch features are generated around these pixels and
SPBL is utilized to classify all the pixels from the original
multitemporal SAR images into changed or unchanged class.
After classification, we can obtain the final change map.
Experimental results on two real sea ice datasets demonstrate
the good performance of the proposed method.

II. METHODOLOGY

The framework of the proposed method is illustrated in
Fig. 1. It consists of three main steps: First, DI generation by
the log-ratio operator. Secondly, hierarchical FCM algorithm
is employed to select reliable samples. Finally, based upon
these samples, SPBL is employed to classify pixels form the
original SAR images into unchanged and changed class. In the
remainder of this section, we will describe more details about
the FCM and SPBL classification.
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Fig. 1. Framework of the proposed change detection method

A. Hierarchical FCM clustering

The FCM algorithm [10] achieves the optimal partitioning
of the samples by minimizing the objective function. Assum-
ing that n samples are clustered into class c, the objective
function is:

f =

n∑
i=1

c∑
j=1

ηmij ||xi − yj ||2, (1)

where xi is the eigenvector of sample i, yj is the clustering
center of j-th class, ηij is the membership of sample i with
respect to j, and m is the weight function. Here, the object
function satisfies the constraint

∑c
j=1 ηij = 1, i = 1, 2, . . . , n.

The FCM algorithm optimizes the objective function by
updating yj and ηij . According to the Lagrange conditional
extreme theory, the object function can be updated as follows:

ηij =
1∑c

k=1(
||xi−yj ||
||xi−yk|| )

2
m−1

, (2)

yij =

∑n
i=1 η

m
ij xi∑n

i=1 η
m
ij

. (3)

When the value of the objective function obtained by
two adjacent iterations satisfies: |ft − ft−1| < ε, it can be
considered that a good clustering result has been obtained and
the updating can be stopped. Here, ε is a small positive number
called tolerance.

In this paper, after obtaining the DI by using the log-
ratio operator, we partition pixels in DI into three groups:
changed class Ωc, unchanged class Ωu, and intermediate class
Ωi. Pixels belonging to Ωc and Ωu have high probabilities to
be changed or unchanged. Here, we use a hierarchical FCM
clustering algorithm [2]. Specifically, the DI is first partitioned
into five clusters. Then some intermediate clusters will be
merged. Finally, we can obtain a preclassification change map
denoted by {Ωc,Ωi,Ωu}. Then, pixels belonging to Ωc and
Ωu are selected as reliable samples.

B. Classification by Self-Paced Boosting Learning

After obtaining reliable samples, neighborhood features of
samples pixels are generated. Then, SPBL classifier is trained
based on these features. Next, the neighborhood features of
pixels belonging to Ωi are fed into the pretrained classifier, and
these pixels are classified into changed or unchanged class.

The SPBL does not directly classify, but instead asymptoti-
cally learns the advancing model from easy simple to complex
samples. Let {(xi, yi)}ni=1 be the training samples, where
xi ∈ Rd is the feature of sample i, yi is the class label of xi.
Therefore, the general objective of SPBL [9] can be formulated
as:

min
w,u

n∑
i=1

vi

c∑
r=1

L(ρir) +

n∑
i=1

g(vi;λ) + νR(W )

s.t. ∀i, r, ρir = Hi:ωr; W ≥ 0; v ∈ [0, 1]n,

(4)

where vi is assigned to each sample as a measure of weight,
H ∈ Rn×z is the weak classifiers’ responses for the training



data with [Hij ] = [hj(xi)], and Hi: is the ith row of H .
si ∈ [0, 1] is the self-paced learning weight of sample xi that
denotes its learning “easiness”. g(·;λ) → R is the self-paced
learning function that specifies how samples are selected. The
function g(si;λ) can dynamically select the easily learned
samples that are more discriminative.

An alternating optimization can be used to solve the above
equation. v and λ can be optimized with the other being fixed
in an alternating manner. For the optimization of v, we can
obtain:

vi
∗ = arg min

vi

vili + g(vi;λ), s.t. ui ∈ [0, 1], (5)

where li = Σr ln(1 + e−ρ
ir

) denotes the loss of samples x.
Jiang et al. [11] summarized the self-paced function. Firstly,

g(vi;λ) is convex w.r.t. vi ∈ [0, 1] to guarantee the uniqueness
of v∗i . Secondly, v∗i is tuned to reduce the simple samples that
can guarantee the less loss of choice. Finally, v∗i increases
monotonically, with high tolerance for losses. This can include
more complex samples.

In addition, W can be optimized as follows:

W ∗ = arg min
W

∑
i,r

si ln(1 + e−ρir ) + ν‖W‖2,1

s.t. ∀i, r, ρir = Hi:wyi −Hi:wr; W ≥ 0.

(6)

To solve W in the above equation, the column generation
method is employed, and the set of active weak classifiers is
augmented. Detailed information about the SPBL algorithm
can be found in Pi’s work [9].

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

We will show the performance of the proposed method
on two real SAR datasets. Both datasets are selected from
two large SAR images of the region of the Sulzberger Ice
Shelf. The images are captured by the European Space Agency
Envisat satellite on March 11 and 16, 2011, respectively. Both
images show the progression of the ice breakup. The ice
breakup is triggered by Tohoku Tsunami in the Pacific Ocean
on March 11 in 2011. The Tohoku Tsunami generates massive
ocean waves. These waves caused the Sulzberger Ice Shelf to
flex and break. We select two typical areas (256 × 256 pixels
for each area) as the datasets. Both datasets and the available
ground truth images which are obtained by integrating prior
information with photo interpretation. Dataset I is shown in
Fig. 1, and Dataset II is shown in Fig. 2.

The performance evaluation of change detection is a critical
issue. First, we use false positives (FP), false negatives (FN),
overall error (OE), percentage correct classification (PCC)
and Kappa coefficient (KC) [12] as indicators to measure the
effectiveness of the proposed method. The FP is the number of
pixels that are unchanged pixels that are changed class in the
ground truth image but wrongly classified as changed ones.
The FN is the number of pixels that are changed class in the
ground truth image but wrongly classified as unchanged ones.
Nt is the number of pixels in the input image. Then the OE

is computed by OE = FP + FN. The PCC is computed by
PCC = (Nt− OE)/Nt× 100%.

(a) (b) (c)

Fig. 2. Dataset I from Sulzberger Ice shelf. (a) Image acquired in March 11
in 2011. (b) Image acquired in March 16 in 2011. (c) Ground truth image.

(a) (b) (c)

Fig. 3. Dataset II from Sulzberger Ice shelf. (a) Image acquired in March 11
in 2011. (b) Image acquired in March 16 in 2011. (c) Ground truth image.

B. Results on the Dataset I

We compare our method with two closely related methods:
PCAKM [13] and GaborPCANet [14]. The final change detec-
tion maps are shown in figure form and the criteria are shown
in tabular form.

(b) PCAKM

(c) GaborPCANet

(a) Ground truth

(d) Proposed method

Fig. 4. Visualized results of change detection methods on Dataset I. (a) Result
by PCAKM [13]. (b) Result by GaborPCANet [14]. (c) Result by the proposed
method.

Fig. 4 shows the final change maps of different methods on
Dataset I, and Table I lists the specific values for evaluation



TABLE I
CHANGE DETECTION RESULTS ON SEA ICE DATASET I.

Methods FP FN OE PCC (%) KC(%)

PCAKM [13] 711 479 1190 98.18 94.23

GaborPCANet [14] 422 724 1146 98.25 94.35

Proposed method 429 464 893 98.64 94.65

criteria. We can observe that there are some noisy white spots
in the results generated by PCAKM. Therefore, the FP value
of PCAKM is relatively high. As shown in Fig. 4(c), some
important changed regions are missed by GaborPCANet, and
the FN value of GaborPCANet is relatively high. As shown in
Fig. 4(d), the proposed method can suppress the speckle noise
to some extent, and then can draw a balance between FP and
FN values. The OE and PCC values of the proposed method
achieves the best performance on this dataset. It proves that
the proposed method can obtain satisfactory results and can
effectively suppress the multiplicative speckle noise involved
in learning.

C. Results on the Dataset II

(b) PCAKM

(c) GaborPCANet

(a) Ground truth

(d) Proposed method

Fig. 5. Visualized results of change detection methods on Dataset II. (a)
Result by PCAKM [13]. (b) Result by GaborPCANet [14]. (c) Result by the
proposed method.

TABLE II
CHANGE DETECTION RESULTS ON DATASET II.

Methods FP FN OE PCC(%) KC(%)

PCAKM [13] 3215 141 3356 94.88 87.13

GaborPCANet [14] 2237 599 2836 95.67 88.82

Proposed method 1580 885 2465 96.24 90.10

Fig. 5 shows the change detection results on Dataset II.
Evidently, the PCAKM and GaborPCANet are contaminated
severely by the speckle noise, and there are many noisy
white spot in the generated change maps. Therefore, the FP
values of PCAKM and GaborPCANet are much higher than
the proposed method. The proposed method produces fewer
false alarms and it suppresses the bad effects of multiplicative
speckle noise. The quantitative and qualitative comparison on
the dataset has demonstrated the superiority of the proposed
method.

IV. CONCLUSION

In this paper, we proposed a novel sea ice classification
framework from SAR images based on SPBL. First, log-ratio
is used to generate a difference image. Then, a hierarchical
FCM clustering algorithm is employed for reliable samples
selection. Finally, SPBL is utilized as the classifier to provide
probability outputs based upon reliable samples. Experiments
on two real sea ice datasets demonstrate that our method
achieves better performance than the previous methods in most
cases.
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